Organic Chemistry II

Exam 3

E
M
1.) Below are 2 hemiacetal forming reactions. Reaction A is favorable, while Reaction B is not favorable. Provide a BRIEF explanation as to why this is the case.

Reaction A

Reaction B

2.) When D-xylose is subjected to the reaction sequence below, two new 6 carbon sugars (A and B) are observed. Provide the structures for the resulting two 6 carbon sugars, and explain why two products are observed.

1.) HCN
2.) H_{2}

A + B
3.) $\mathrm{H}_{3} \mathrm{O}^{+}$
(Two 6 Carbon Sugars)
3.) Given the reaction below, draw the full arrow-pushing mechanism.

4.) Pictured below is D-glucose (the all equatorial sugar, remember?). When D-glucose is subjected to acidic conditions, it is observed that the stereochemistry at the anomeric carbon is effectively altered, resulting in a $50 \%-50 \%$ mix of wedge and dash at that position.
Draw the full arrow pushing mechanism that illustrates this transformation.

5.) Given the hexose below (in bond-line form), redraw the structure as a: Fischer Projection, Haworth Projection*, and Chair Conformation*
Use a squiggly line at the anomeric position for the Haworth Projection and Chair Conformation

6.) The reactions below are shown missing their final product. For each problem below, correctly predict the final product. If you believe no product is formed/no reaction occurs, write "NR".

1.) LiAlH_{4}
2.) $\mathrm{H}_{3} \mathrm{O}^{+}$

$\xrightarrow{\mathrm{HNO}_{3}}$

1.) NH_{2}
2.) $\xrightarrow[\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{H}^{+}]{\mathrm{H}^{+},-\mathrm{H}_{2} \mathrm{O}}$

